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Geometry of fully coordinated, two-dimensional percolation
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We study the geometry of the critical clusters in fully coordinated percolation on the square lattice. By
Monte Carlo simulationsstatic exponenjsand normal mode analysiglynamic exponenjswe find that this
problem is in the same universality class with ordinary percolattatically but not sodynamically We show
that there are large differences in the number and distribution ohtkedor sites between the two problems
that may account for the different dynamic natlji®1063-651X99)04610-3

PACS numbg(s): 05.40.Fb, 05.70.Fh, 05.70.Jk, 64.60.Ak

[. INTRODUCTION revisiting the characteristics of randomly generated but
highly connected geometrical structures.

The geometrical phase transition known as percolation In the next section, we summarize the Monte Carlo and
(see, for a review, Stauffer and Aharofi]) is appreciated finite size scaling analyses of the static critical properties of
by many to be an elegant and simply defined yet fully feafully coordinated percolation. In Sec. Ill, we discuss the nor-
tured example of a second order phase transition. A numbénal modes of théransition probability matrixfor tracer dif-
of variations of the original percolation problem were pro-fusion on the structure using the methods of Arnoldi and
posed as better models of some physical phenomena in teaad(see, e.g.[8]). Then in Sec. IV, we describe the clas-
past. This includes th@ackbonepercolation for studying Sification of the cluster sites into external boundary, internal
electrical conduction through random medimlychromatic ~ boundary, and interior ones and use these to show the major
percolation for multicomponent composites, dadrfold co-  distinctions between the critical clusters of ordinary and fully
ordinatedbond perco|ati0n for hydrogen_bonded water mo|-coordin§1ted percolation. We summarize the results in the fi-
ecules. In particular, Blumberet al. [2] and Gonzalez and nal section.

Reynoldg[3] studied a random bond, site-correlated percola-
tion problem they call four-coordinated percolation on the Il. STATIC CRITICAL BEHAVIOR
square lattice. They conclude that this problem belongs to

the same universality class as the ordinary random percola- 10 determine the static critical behavior of fully coordi-
tion with the same set dftatio exponents. nated percolation we first performed Monte Carlo simula-

cupied sites all of whose neighboring sites are also occupiekiattice sizes ol.? whereL =256, 512, 1024, and 2048 were
can transmit connectivity. Since the random element is th&€onstructed. For each lattice size we further made a thousand
site, this problem is slightly different from the bond problem realizations wherein a different random number seed was
referred to above. Thus, after generating a random site conised on every run. The unnormalized susceptibilities, i.e.,
figuration with the independent site occupation probabjiity = (L)=2.s’ng whereny is the number of clusters of size
we only select those occupied sites with all four neighborsare calculated on each run and are then summed at the end of
also occupied on the square lattice and study the clustetbe thousand realizations. The average susceptibilitiase
formed by nearest neighbor connections among those sites.dalculated by dividing the sum by the number of realizations
should be noted that this problem is distinct from the so-and the lattice size. The prime on the summation indicates
called bootstrap percolatidsee, e.g.[4]) where sites of less the fact that the contribution of the largest clusterntmear
connectivity are iteratively removed. In our problem, no it- and above what we perceived to be the critical probaljlity
erative procedures are involved; rather, sites of less than fuhas been subtracted as uspLil
connectivity are marked first and then all of them removed at In Fig. 1 we plot the average susceptibilities against the
one time. probability p for the corresponding lattice sizes. The data
This problem arose in the context of studying the vibra-correspond to the values df=256, 512, 1024, and 2048
tional properties of fractal structures tethered at their boundfrom the lowest to highest. We can see that the effects due to
aries[5,6]. In that problem, scaling was observed in the nor-the finite sizes of the lattices are exhibited clearly. In particu-
mal mode spectrum whose origin may lie in the ratio of twolar, there are well-defined peaks which scale with lattice
length scales, one of which is the size of highly connectedizes as
regions of a cluster. In this context, we have embarked on

X(pmax’L)NLylvv 1
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University, Kangnung, Kangwon 210-702, South Korea. lation is 33 ~1.7917. To demonstrate the precision of our
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10° - for the value ofp. close to 0.8858We will state the experi-
/ ] mental uncertainty forp. after all our analyses are pre-

sented).
From the fit done to examine the scaling in Ef) we
could further conclude that for fully coordinated percola-
t* 10° 10t tion should be the same with that for ordinary percolation.
This again confirms the statement that fully coordinated per-
] colation is in the samsetatic universality class as ordinary
10° & percolation. Another universal constant often used to charac-
8 % , terize ordinary percolation is the amplitude ra@o /C_ of
162 8 % susceptibility y (whose value is about 200 iti=2 [7]). In
8 fully coordinated percolation, this quantity is unfortunately
L difficult to calculate accurately because the critical region for
10% ] p>p. is very small(see beloywn. When we constrain the
08 0.9 1.0 exponenty to be close toy, and use th@,. estimated in this
P work, however, we find that, /C_ is of O(10?), which is
FIG. 1. Susceptibilitiesy for fully coordinated percolation on consistent W.'th t.he above observation as well. -
finite square lattices of sizk? are shown against probability, . The pontrlbutlon of the largest cluster to the susceptlblllty
where crosses, diamonds, squares, and circles are Lfor 'S‘_ '_th significant Wh,efp<l?c- However, wherp~p. a sig-
=256, 512, 1024, and 2048, respectively. The inset shows th8ificant number of sites will belong to the largest cluster and
finite-size scaling of the peaks of these curves by plotting the maxi"vhenp=p. the largest cluster is dominant in the whole lat-
mum y vs L ona |og_|og scalel is a dimensionless quantity cor- tice. The a.Vera.ge Susceptlblllty Contribution due to th|S Iarg'
responding to the length, in multiples of the lattice constant, of theest cluster iSX1=ESﬁ1a>{(L2N), where the summation is
side of a square lattice. over N=1000 realizations and,,, is the size of the largest
cluster. The fractal dimensiord;, can be obtained from
calculations, we ploty(pPmax,L) against the corresponding Smax bY
lattice sizes in the inset of Fig. 1. Notice that the data follow d
an excellent P%/iller law, leading to a least squares fit of Smax(Pe) ~ L™, )
X(Pmax,L)~L>"*% The value ofy found is identical to the — . .
ordinary percolation value to within about 0.03%. This resultWhereSma*( Pc) is the mean size of the largest clustepat
confirms previous work2,3] stating that fully coordinated X1 should therefore scale as
percolation and ordinary percolation belong to the same xq~L24172, (4)
static universality class.
The critical behavior of susceptibility is known to scale For ordinary percolation on a two dimensional lattisee,
as[1] e.g., [1]), it is known that d;=91/48 and y=2d;—2
~1.7917. For fully coordinated percolation, the scaling in
x(p,2)~|p—pd 7, 2 Eq. (4) have two unknowngy. andd; . Similarly to what we
have done when examining the scaling in E2), we choose
trial values forp. and then perform a least squares fit to
obtain the corresponding=2d;—2. By looking for the
range of trialp, that maximizes the regression coefficient
IR|, we arrive at an estimate gf. to be close to 0.8845,
where|R|=1 andy=1.7855. The variation ofR| is about
two parts in 18 if p. is varied by 0.0002, always with less
than 1% deviation from the ordinary percolation valueyof
From these results we conclude tliatfor fully coordinated
f percolation is the same as that for ordinary percolation as
well as the estimate of about 0.8845 fuy.
In addition to the above, we have also performed the scal-
ing analysis of the quantity,(p,L), as bothp andL are
varied, in the form of

10*

x(L) =2's%n

where for ordinary percolationy,=%:~2.3889. Notice,
however, that in Fig. 1 the peaks are very nparl.0. This
would provide data to the right of the peaks in only a small
probability interval. In our simulations, we would therefore
usey only to the left of the peaks.

Since the scaling relation in E¢R) is expected only for
infinite lattices, we use only the data taken frara 2048 to
test it. Since there are two unknowns in E@), we first
choose a particulap, and make a fit to see what value o
Yexp IS oObtained. If we choose.=0.886 we getye,,
=2.4004. The correlation coefficientR|, for this fit is
0.99999. The discrepancy between,, and vy, is around
0.481%. Choosing.= 0.8858 we obtainy.,,=2.3864. The
discrepancy this time is around 0.10% arrﬁd=1. So we Yir=L22g(|p—p.|*L), (5)
have an exact fit for this value gf; and they,,, found is
very close to they,. Choosingp.=0.885 we obtainy.,,  whereg(|p—p¢*L) is a scaling function. Using the exactly
=2.3302 with an|R|=0.99999. The discrepancy for this known ordinary percolation values of the exponatsind v
value ofp, is 2.46%. Fits done witlp, between 0.885 and (as they have been shown to be the same for fully coordi-
0.886 gave|R|=1; however, the yexp found when p, nated percolation aboyewe obtained the maximum data
=0.8858 gave the closest value 4. This allows us to collapsing in the range of 0.884p.<0.885.
conclude thaty for fully coordinated percolation is the same  Independent of the above analyses based on the fully co-
as that for ordinary percolation while also giving an estimateordinated clusters obtained by Monte Carlo simulations of
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10° or its equivalentscalar elastic behavior. This represents the
E ] simplest kind of dynamics associated with these complicated

geometrical objects and is mainly reflected in the toye
namic critical exponents calledg (spectral dimensionand
d,, (walk dimension.
E It is well known (see, e.g.[10]) that the return-to-the
o] starting point probability of the random walR(t), in the

o] long-time limit obeys the power law

bd x
b X
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103 " ol I
10° 1o 10% whereds is the spectral dimension of the walk. In a fractal
> medium,dy is less than the space dimensidnbecause the
FIG. 2. The scaled partial suiN; is plotted against” for p progressive displacement of the random walker further from
=0.890 (crossey 0.885 (circles, 0.884 (triangles, and 0.880 the starting point is hampered by its encounter with the ir-
(plusses The dashed line is a horizontal line to guide the eye,regularities of the medium at all scales. Thdsjs expected
showing that the data fqy=0.885 best fits the horizontal slope for to be greater for environments that provide higher connectiv-
large cluster sizes. ity at large length scales, independently of the fractal dimen-
sion itself which is mainly the measure of the oversilte
fixed-sized square grids, we have also performed Montgcales othow manysites are connected, nbbw wellthose
Carlo simulations by growing fully coordinated clusters sites are connected to each other.
starting from a seed site using a variant of tireadth-first For media with long-range loops; (fractal dimensioj
searchalgorithm[8]. This latter approach has an advantaged,, andd,, are not independent but are expected to obey the
that there is no obvious finite-size effects and that statisticgvell-known Alexander and Orbach scaling l&h0]
taken while a cluster is still growing representgatial sum
automatically. That is, we start growing such clusters 10 000 ds=2d;/d,,. 9
times at each op=0.880, 0.884, 0.885, and 0.890, and keep
track of how many of them are still growing at predeter- For this reason, we only calculatig here though bothis and
mined intervals of size (2wheren=1,2,...,15 in our d,, can be conveniently calculated by numerically studying

Case_ Th|s number, Saws represents the partia' sum thetransition probablllty matriXVV Wh|Ch represent the ran-
dom walk on a specific fractal medium. Our calculation in

1 , this work is only one aspect of such an analysis: finite size
Ns/Nl:E Z SNy . (6) scaling of the dominant nontrivial eigenvalue which de-
s=s scribes the longest finite time scale of the Brownian process.
Since the normalized number of sigelustersng, scales  This approach has already been described in detail elsewhere
as s~ "f(es”), where r=187/91 ando=236/91, we expect [9], and thus we merely state the main feature and then im-
that N, scales as mediately report our specific numerical results.
The matrixW is constructed from the elementg; being
Ns™ 2~ f(es”) (7) equal to a hopping probability per stépqual toz here for
available nearest neighbor sitesnd . For each neighbor
near p, and for larges. In particular, atp., this quantity  site which is not present, a probability éfis added to the
should be constant independent(t#rge) s. The numerical  probability for not taking a step for one time period; this is
results are shown in Fig. 2, where the data correspond, fromalled theblind ant rule. Many large matrice¥V are ob-
highest to lowest, tp=0.890, 0.885, 0.884, and 0.880. The tained by Monte Carlo simulatio(tby growing a fully coor-
horizontal dashed line drawn to guide the eye makes it cleadinated percolation cluster from a seed site and stopping the
that data forp=0.885 best approximates a horizontal line asgrowth when a predetermined desired size is reached
s— oo, suggesting that a good estimatepgfwould be 0.885. their largest eigenvalues are numerically obtained by the so-
We now consider all the above results together. The reealled Arnoldi-Saadmethod. The dominant nontrivial eigen-
sults from scaling in Eq(2) indicate a range 0.885—0.886, value \; is the largest eigenvalue just below the stationary
and those from scaling in Eq4) indicate 0.8844-0.8847, eigenvalue 1 and it is known to satisfy the following finite
while those from scaling in Eq5) hints atp. being in the size scaling law:
0.884-0.885 interval. Another result that could also be used
are the values op for the peaks in Fig. 1, which vary from INNg|~1-N\;~S %%, (10
0.8841 to 0.8844(with the peak for the largest grid

=2048 occurring apea= 0.8844). Combining all these re- Shown in Fig. 3 are our results from such an analysis. We
sults, our final estimate ig,= 0.885+0.001. have generated at least 1000 independent realizations of the

underlying fully coordinated percolation clusters for sifes
=1250, 2500, 5000, 10000, and 20000 at each of the three
nominal probabilitiesp=0.883, 0.885, and 0.887, and nu-
By dynamic critical behavior here we simply mean the merically obtained\, for each cluster. The main part of Fig.
asymptotic long-time behavior of diffusion taking place on 3 shows the data fromp=0.885, the value shown to be clos-
an incipient infinite cluster of fully coordinated percolation, est top. in this work. The figure shows an excellent power

IlI. DYNAMIC CRITICAL BEHAVIOR
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)"normalized
w

10° 16‘ 10°
s
FIG. 3. The scaling of the largest nontrivial eigenvalyeof the
Markov chain analysis is shown by plotting-I\ ; against the clus-
ter sizes on a log-log scale. The inset shows a normalizetbee
text) for p=0.887, 0.885, and 0.88@rom top. The solid line is
horizontal, corresponding to the slope for ordinary percolation.

law fit (regression coefficient of 0.999 93) to Eq(10) with
the exponent 2i,=1.486+-0.01. This power translates to
ds=1.346+0.011, which is close to but significantly larger
than the corresponding ordinary percolation valuedg?

=1.30+0.02 estimated by many independent calculations.

(See, e.g.]8].) For comparison, #ooplessvariant of perco-

lation has exactly the same static exponents as ordinary per- 4, oag, Mo
HE

colation but haslg~1.22 in two dimensions, about twice as
much deviation from ordinary percolation in the opposite

direction as the present fully coordinated percolation prob-
lem[11].

In the inset for Fig. 3, we show a normaliz&d by plot-
ting (1—)\1)82"’(:), where the circles are fop=0.887,
squares fop=0.885, diamonds fop=0.883, and the solid
line is a horizontal line(for ordinary percolationto guide
the eye. In all cases, the standard errors of the mean for each
set of data are substantially smaller than the size of the sym-
bols used in the figure. The distribution ®f in each case
appears to be Gaussian with the standard deviations scaling
in the same way as the means.

From these results, we conclude that, though the numeri-
cal differences are small, it is likely that the fully coordinated
percolation clusters are significantly different from the ordi-
nary percolation counterparts even at long length scales. In
the next section, we show that this analysis is vindicated by
exposing one dramatic difference in the cluster morphology
which will not be obvious to an uncritical observer.

IV. CLUSTER GEOMETRY

In this section we examine the geometry of fully coordi-
nated percolation clusters more closely. First, we present Fig.
4 which show in gray scale the sites @j fully coordinated
percolation cluster antb) ordinary percolation cluster at re-
spectivep.. The overall visual impression is that they are
very similarly shaped even down to the details of the bound-
aries and internal holes. Their shapes are also essentially
independent of the underlying lattice anisotropy. However,
the number and distributions of the especially dark points are
evidently quite distinct in Fig. @ and 4b). They cluster

more and are much more abundant in Fig)4han in 4b).
These sites are actually tivgerior or fully coordinated sites
in the internal part of the cluster. The remaining sitgsaded
gray) are either the externdlull sites or internal boundary
sites.

FIG. 4. (a) A typical fully coordinated percolation cluster at its
p., and(b) the corresponding critical ordinary percolation cluster.
The dark points are thimterior sites of full coordination and the
gray shaded sites are either on the external hull or internal bound-
aries.
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10° ——g comprise less and less of the clustesas® and the remain-
] ing sites(i.e., interior andinternal boundarysite9 eventu-

] ally dominate the whole cluster. This is already evident from

4 the greater slopes close to 1 for timerior sites in Fig. 5.

The linear regression fits for thHaull sites in Fig. 5 indicate

(=1
rS

] the slopes of about 0.922 for ordinary percolation and 0.914
o . for fully coordinated percolation with essentially perfect fits,
- E again reinforcing the conclusion that they show the same
1.0 1 static critical behavior.

Number of Sites
2
T
o
1

102 1 | L Lo
10t 108 10° V. SUMMARY AND CONCLUSION

Cluster Size

In summary, we have studied both static and dynamic
critical behaviors associated with a model of the highly con-
nected regions of a disordered cluster. The model &tea
variant of the four-coordinated percolatidr2,3] on the
square lattice we caliully coordinated percolationWhile
the bond version was studied fstatic critical behavior, nei-
ther bond nor site version was previously studied for the
dynamic behavior to the best of our knowledge. We have

In Fig. 5 quantitative examination is made on the differentSéd various methods such as Monte Carlo simulations,
classes of sites of the two kinds of clusters. In the main parfnite-sizé scaling and Arnoldi-Saad approximate diagonal-
of the figure, the average numbers of two kinds of sites ardation of Iarge_; f@”dc?m matrices for this purpose.. .
shown,interior (diamonds for fully coordinated percolation, Though all indications are that the static behavior of this

crosses for ordinary percolatiprand external (squares for model is exalt(:tly the sam(ra] as the qrdina;]y percorl1a('m1
fully coordinated percolation, pluses for ordinary percola-Previous work suggestgdthe dynamic behavior shows a

tion). It is clear that the interior sites are more than threeSMall but significant difference in the values of the universal

times more abundant in fully coordinated percolation, than irf1itical éxponents. We have looked for the cause of this di-
ordinary percolation as is visually suggested by Fig. 4ference and found a threefold increase in the number and

Though this is primarily a local effect due to the full coor- significantly enhanced. cIustgring of the intgrior sites.,
dination rule, they do have a multiplicative effect at long- those not on the exterior or internal boundariasd the as-

range connectivity and thus may well be the source of the0Ciated decrease in the number of boundary sites. Thus,
small difference in the value df. . although the deviations frpm qr_dmary percolation in terms of
Of course just the fact that there are more than three time%e values of the dynamic critical exponents are not large,
as many interior site@nd correspondingly, much fewball there will be rathg'r significant differences in any processes
siteg in fully coordinated percolation must have quantitativethat depend sensm_vely on those _”“”Fbers- P055|bl_e examples
consequence@ven if not qualitativefor any process on the of such processes mc_lude the oxidation of a mat_erlal through
cluster which depends on degrees of connectivity rather thafi/€ €xtérnal embedding phase and the vibrational normal

just on the number of connected sites. An example of th&ndes with boundary conditions such@ampingor tether-

effect of the different numbers of the hull sites may be ining of the external boupdarie(mrough the contrast_in elastic
oxidation or catalysis of a material through the external em_consltants of embedding and embedded materials, for ex-
bedding phase or even a irregularly shaped breakwater in tH&TP!€-

form of the external boundary of a percolation cluster. The

FIG. 5. The numbers afxternalsites(squares and plussesnd
those ofinterior sites(diamonds and crosseare scaled against the
cluster sizes. The solid(fully coordinated percolationand dashed
(ordinary percolationlines are the linear least squares fits. In the

inset, we show the number of external sites dividedsfy ",
showing that the population of the exterralll sites of fully coor-
dinated and ordinary percolation scale in the same way.
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