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Geometry of fully coordinated, two-dimensional percolation

E. Cuansing, J. H. Kim* and H. Nakanishi
Department of Physics, Purdue University, West Lafayette, Indiana 47907

~Received 21 April 1999!

We study the geometry of the critical clusters in fully coordinated percolation on the square lattice. By
Monte Carlo simulations~static exponents! and normal mode analysis~dynamic exponents!, we find that this
problem is in the same universality class with ordinary percolationstaticallybut not sodynamically. We show
that there are large differences in the number and distribution of theinterior sites between the two problems
that may account for the different dynamic nature.@S1063-651X~99!04610-3#

PACS number~s!: 05.40.Fb, 05.70.Fh, 05.70.Jk, 64.60.Ak
tio

a
b
o-
t

ol

la
he

o

gh

c
pie
th
m
co

or
te
s

so

it-
fu
a

ra
nd
or

o
te
o

but

nd
of

or-

nd
s-
nal
ajor
lly
fi-

i-
la-
oc-
ly
hed.
e
and
as

.e.,

nd of

ns
tes

the
ta

e to
u-

ice

ur
on
I. INTRODUCTION

The geometrical phase transition known as percola
~see, for a review, Stauffer and Aharony@1#! is appreciated
by many to be an elegant and simply defined yet fully fe
tured example of a second order phase transition. A num
of variations of the original percolation problem were pr
posed as better models of some physical phenomena in
past. This includes thebackbonepercolation for studying
electrical conduction through random media,polychromatic
percolation for multicomponent composites, andfourfold co-
ordinatedbond percolation for hydrogen-bonded water m
ecules. In particular, Blumberget al. @2# and Gonzalez and
Reynolds@3# studied a random bond, site-correlated perco
tion problem they call four-coordinated percolation on t
square lattice. They conclude that this problem belongs
the same universality class as the ordinary random perc
tion with the same set of~static! exponents.

In this paper, we revisit a problem in this realm, thou
not exactly the same one. We definefully coordinated per-
colation as the site percolation problem where only the o
cupied sites all of whose neighboring sites are also occu
can transmit connectivity. Since the random element is
site, this problem is slightly different from the bond proble
referred to above. Thus, after generating a random site
figuration with the independent site occupation probabilityp,
we only select those occupied sites with all four neighb
also occupied on the square lattice and study the clus
formed by nearest neighbor connections among those site
should be noted that this problem is distinct from the
called bootstrap percolation~see, e.g.,@4#! where sites of less
connectivity are iteratively removed. In our problem, no
erative procedures are involved; rather, sites of less than
connectivity are marked first and then all of them removed
one time.

This problem arose in the context of studying the vib
tional properties of fractal structures tethered at their bou
aries@5,6#. In that problem, scaling was observed in the n
mal mode spectrum whose origin may lie in the ratio of tw
length scales, one of which is the size of highly connec
regions of a cluster. In this context, we have embarked
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revisiting the characteristics of randomly generated
highly connected geometrical structures.

In the next section, we summarize the Monte Carlo a
finite size scaling analyses of the static critical properties
fully coordinated percolation. In Sec. III, we discuss the n
mal modes of thetransition probability matrixfor tracer dif-
fusion on the structure using the methods of Arnoldi a
Saad~see, e.g.,@8#!. Then in Sec. IV, we describe the cla
sification of the cluster sites into external boundary, inter
boundary, and interior ones and use these to show the m
distinctions between the critical clusters of ordinary and fu
coordinated percolation. We summarize the results in the
nal section.

II. STATIC CRITICAL BEHAVIOR

To determine the static critical behavior of fully coord
nated percolation we first performed Monte Carlo simu
tions on a square lattice in two dimensions. Each site is
cupied with probabilityp independently and subsequent ful
coordinated sites are marked and their connectivity searc
Lattice sizes ofL2 whereL5256, 512, 1024, and 2048 wer
constructed. For each lattice size we further made a thous
realizations wherein a different random number seed w
used on every run. The unnormalized susceptibilities, i
J(L)5(s8s

2n̂s wheren̂s is the number of clusters of sizes,
are calculated on each run and are then summed at the e
the thousand realizations. The average susceptibilitiesx are
calculated by dividing the sum by the number of realizatio
and the lattice size. The prime on the summation indica
the fact that the contribution of the largest cluster tox near
and above what we perceived to be the critical probabilitypc
has been subtracted as usual@1#.

In Fig. 1 we plot the average susceptibilities against
probability p for the corresponding lattice sizes. The da
correspond to the values ofL5256, 512, 1024, and 2048
from the lowest to highest. We can see that the effects du
the finite sizes of the lattices are exhibited clearly. In partic
lar, there are well-defined peaks which scale with latt
sizes as

x~pmax,L !;Lg/n, ~1!

where the known exact value ofg/n for the ordinary perco-
lation is 43

24 ;1.7917. To demonstrate the precision of o
al
3670 © 1999 The American Physical Society
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PRE 60 3671GEOMETRY OF FULLY COORDINATED, TWO- . . .
calculations, we plotx(pmax,L) against the correspondin
lattice sizes in the inset of Fig. 1. Notice that the data foll
an excellent power law, leading to a least squares fit
x(pmax,L);L1.7911. The value ofg found is identical to the
ordinary percolation value to within about 0.03%. This res
confirms previous work@2,3# stating that fully coordinated
percolation and ordinary percolation belong to the sa
static universality class.

The critical behavior of susceptibility is known to sca
as @1#

x~p,`!;up2pcu2g, ~2!

where for ordinary percolationgo5 43
18 ;2.3889. Notice,

however, that in Fig. 1 the peaks are very nearp51.0. This
would provide data to the right of the peaks in only a sm
probability interval. In our simulations, we would therefo
usex only to the left of the peaks.

Since the scaling relation in Eq.~2! is expected only for
infinite lattices, we use only the data taken fromL52048 to
test it. Since there are two unknowns in Eq.~2!, we first
choose a particularpc and make a fit to see what value
gexp is obtained. If we choosepc50.886 we getgexp
52.4004. The correlation coefficient,uRu, for this fit is
0.999 99. The discrepancy betweengexp and go is around
0.481%. Choosingpc50.8858 we obtaingexp52.3864. The
discrepancy this time is around 0.10% anduRu51. So we
have an exact fit for this value ofpc and thegexp found is
very close to thego . Choosingpc50.885 we obtaingexp
52.3302 with anuRu50.999 99. The discrepancy for th
value of pc is 2.46%. Fits done withpc between 0.885 and
0.886 gave uRu51; however, thegexp found when pc
50.8858 gave the closest value togo . This allows us to
conclude thatg for fully coordinated percolation is the sam
as that for ordinary percolation while also giving an estim

FIG. 1. Susceptibilitiesx for fully coordinated percolation on
finite square lattices of sizeL2 are shown against probabilityp,
where crosses, diamonds, squares, and circles are foL
5256, 512, 1024, and 2048, respectively. The inset shows
finite-size scaling of the peaks of these curves by plotting the m
mum x vs L on a log-log scale.L is a dimensionless quantity cor
responding to the length, in multiples of the lattice constant, of
side of a square lattice.
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for the value ofpc close to 0.8858.~We will state the experi-
mental uncertainty forpc after all our analyses are pre
sented.!

From the fit done to examine the scaling in Eq.~1! we
could further conclude thatn for fully coordinated percola-
tion should be the same with that for ordinary percolatio
This again confirms the statement that fully coordinated p
colation is in the samestatic universality class as ordinar
percolation. Another universal constant often used to cha
terize ordinary percolation is the amplitude ratioC1 /C2 of
susceptibilityx ~whose value is about 200 ind52 @7#!. In
fully coordinated percolation, this quantity is unfortunate
difficult to calculate accurately because the critical region
p.pc is very small ~see below!. When we constrain the
exponentg to be close togo and use thepc estimated in this
work, however, we find thatC1 /C2 is of O(102), which is
consistent with the above observation as well.

The contribution of the largest cluster to the susceptibi
is not significant whenp,pc . However, whenp;pc a sig-
nificant number of sites will belong to the largest cluster a
whenp.pc the largest cluster is dominant in the whole la
tice. The average susceptibility contribution due to this la
est cluster isx15(smax

2 /(L2N), where the summation is
over N51000 realizations andsmax is the size of the larges
cluster. The fractal dimension,df , can be obtained from
smax by

smax~pc!;Ldf , ~3!

wheres̄max(pc) is the mean size of the largest cluster atpc .
x1 should therefore scale as

x1;L2df22. ~4!

For ordinary percolation on a two dimensional lattice~see,
e.g., @1#!, it is known that df591/48 and y[2df22
;1.7917. For fully coordinated percolation, the scaling
Eq. ~4! have two unknowns,pc anddf . Similarly to what we
have done when examining the scaling in Eq.~2!, we choose
trial values for pc and then perform a least squares fit
obtain the correspondingy52df22. By looking for the
range of trialpc that maximizes the regression coefficie
uRu, we arrive at an estimate ofpc to be close to 0.8845
where uRu51 andy51.7855. The variation ofuRu is about
two parts in 105 if pc is varied by 0.0002, always with les
than 1% deviation from the ordinary percolation value ofy.
From these results we conclude thatdf for fully coordinated
percolation is the same as that for ordinary percolation
well as the estimate of about 0.8845 forpc .

In addition to the above, we have also performed the s
ing analysis of the quantityx1(p,L), as bothp and L are
varied, in the form of

x i15L2df22g~ up2pcunL !, ~5!

whereg(up2pcunL) is a scaling function. Using the exactl
known ordinary percolation values of the exponentsdf andn
~as they have been shown to be the same for fully coo
nated percolation above!, we obtained the maximum dat
collapsing in the range of 0.884,pc,0.885.

Independent of the above analyses based on the fully
ordinated clusters obtained by Monte Carlo simulations
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fixed-sized square grids, we have also performed Mo
Carlo simulations by growing fully coordinated cluste
starting from a seed site using a variant of thebreadth-first
searchalgorithm @8#. This latter approach has an advanta
that there is no obvious finite-size effects and that statis
taken while a cluster is still growing represents apartial sum
automatically. That is, we start growing such clusters 10 0
times at each ofp50.880, 0.884, 0.885, and 0.890, and ke
track of how many of them are still growing at predete
mined intervals of size (2n where n51,2, . . . ,15 in our
case!. This number, say,Ns represents the partial sum

Ns /N15
1

p (
s8>s

s8ns8 . ~6!

Since the normalized number of size-s clusters,ns , scales
as s2t f (ess), where t5187/91 ands536/91, we expect
that Ns scales as

Nss
t22; f̂ ~ess! ~7!

near pc and for larges. In particular, atpc , this quantity
should be constant independent of~large! s. The numerical
results are shown in Fig. 2, where the data correspond, f
highest to lowest, top50.890, 0.885, 0.884, and 0.880. Th
horizontal dashed line drawn to guide the eye makes it c
that data forp50.885 best approximates a horizontal line
s→`, suggesting that a good estimate ofpc would be 0.885.

We now consider all the above results together. The
sults from scaling in Eq.~2! indicate a range 0.885– 0.886
and those from scaling in Eq.~4! indicate 0.8844–0.8847
while those from scaling in Eq.~5! hints atpc being in the
0.884–0.885 interval. Another result that could also be u
are the values ofp for the peaks in Fig. 1, which vary from
0.8841 to 0.8844~with the peak for the largest gridL
52048 occurring atppeak50.8844). Combining all these re
sults, our final estimate ispc50.88560.001.

III. DYNAMIC CRITICAL BEHAVIOR

By dynamic critical behavior here we simply mean t
asymptotic long-time behavior of diffusion taking place
an incipient infinite cluster of fully coordinated percolatio

FIG. 2. The scaled partial sumNs is plotted againstss for p
50.890 ~crosses!, 0.885 ~circles!, 0.884 ~triangles!, and 0.880
~plusses!. The dashed line is a horizontal line to guide the e
showing that the data forp50.885 best fits the horizontal slope fo
large cluster sizes.
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or its equivalentscalar elastic behavior. This represents th
simplest kind of dynamics associated with these complica
geometrical objects and is mainly reflected in the twody-
namic critical exponents calledds ~spectral dimension! and
dw ~walk dimension!.

It is well known ~see, e.g.,@10#! that the return-to-the
starting point probability of the random walk,P(t), in the
long-time limit obeys the power law

P~ t !;t2ds/2, ~8!

whereds is the spectral dimension of the walk. In a fract
medium,ds is less than the space dimensiond, because the
progressive displacement of the random walker further fr
the starting point is hampered by its encounter with the
regularities of the medium at all scales. Thus,ds is expected
to be greater for environments that provide higher connec
ity at large length scales, independently of the fractal dim
sion itself which is mainly the measure of the overallsize
scales orhow manysites are connected, nothow well those
sites are connected to each other.

For media with long-range loops,df ~fractal dimension!,
ds , anddw are not independent but are expected to obey
well-known Alexander and Orbach scaling law@10#

ds52df /dw . ~9!

For this reason, we only calculateds here though bothds and
dw can be conveniently calculated by numerically studyi
the transition probability matrixW which represent the ran
dom walk on a specific fractal medium. Our calculation
this work is only one aspect of such an analysis: finite s
scaling of the dominant nontrivial eigenvalue which d
scribes the longest finite time scale of the Brownian proce
This approach has already been described in detail elsew
@9#, and thus we merely state the main feature and then
mediately report our specific numerical results.

The matrixW is constructed from the elementsWi j being
equal to a hopping probability per step~equal to1

4 here! for
available nearest neighbor sitesi and j. For each neighbor
site which is not present, a probability of1

4 is added to the
probability for not taking a step for one time period; this
called theblind ant rule. Many large matricesW are ob-
tained by Monte Carlo simulation~by growing a fully coor-
dinated percolation cluster from a seed site and stopping
growth when a predetermined desired size is reached! and
their largest eigenvalues are numerically obtained by the
calledArnoldi-Saadmethod. The dominant nontrivial eigen
value l1 is the largest eigenvalue just below the stationa
eigenvalue 1 and it is known to satisfy the following fini
size scaling law:

u ln l1u'12l1;S22/ds. ~10!

Shown in Fig. 3 are our results from such an analysis.
have generated at least 1000 independent realizations o
underlying fully coordinated percolation clusters for sizesS
51250, 2500, 5000, 10 000, and 20 000 at each of the th
nominal probabilitiesp50.883, 0.885, and 0.887, and nu
merically obtainedl1 for each cluster. The main part of Fig
3 shows the data fromp50.885, the value shown to be clos
est topc in this work. The figure shows an excellent pow

,
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law fit ~regression coefficient of20.999 93) to Eq.~10! with
the exponent 2/ds51.48660.01. This power translates t
ds51.34660.011, which is close to but significantly large
than the corresponding ordinary percolation value ofds

(O)

51.3060.02 estimated by many independent calculatio
~See, e.g.,@8#.! For comparison, alooplessvariant of perco-
lation has exactly the same static exponents as ordinary
colation but hasds'1.22 in two dimensions, about twice a
much deviation from ordinary percolation in the oppos
direction as the present fully coordinated percolation pr
lem @11#.

In the inset for Fig. 3, we show a normalizedl1 by plot-

ting (12l1)S2/ds
(o)

, where the circles are forp50.887,
squares forp50.885, diamonds forp50.883, and the solid
line is a horizontal line~for ordinary percolation! to guide
the eye. In all cases, the standard errors of the mean for
set of data are substantially smaller than the size of the s
bols used in the figure. The distribution ofl1 in each case
appears to be Gaussian with the standard deviations sc
in the same way as the means.

From these results, we conclude that, though the num
cal differences are small, it is likely that the fully coordinat
percolation clusters are significantly different from the or
nary percolation counterparts even at long length scales
the next section, we show that this analysis is vindicated
exposing one dramatic difference in the cluster morpholo
which will not be obvious to an uncritical observer.

IV. CLUSTER GEOMETRY

In this section we examine the geometry of fully coord
nated percolation clusters more closely. First, we present
4 which show in gray scale the sites of~a! fully coordinated
percolation cluster and~b! ordinary percolation cluster at re
spectivepc . The overall visual impression is that they a
very similarly shaped even down to the details of the bou
aries and internal holes. Their shapes are also essen
independent of the underlying lattice anisotropy. Howev
the number and distributions of the especially dark points
evidently quite distinct in Fig. 4~a! and 4~b!. They cluster
more and are much more abundant in Fig. 4~a! than in 4~b!.
These sites are actually theinterior or fully coordinated sites
in the internal part of the cluster. The remaining sites~shaded
gray! are either the externalhull sites or internal boundary
sites.

FIG. 3. The scaling of the largest nontrivial eigenvaluel1 of the
Markov chain analysis is shown by plotting 12l1 against the clus-
ter sizes on a log-log scale. The inset shows a normalizedl ~see
text! for p50.887, 0.885, and 0.883~from top!. The solid line is
horizontal, corresponding to the slope for ordinary percolation.
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FIG. 4. ~a! A typical fully coordinated percolation cluster at it
pc , and~b! the corresponding critical ordinary percolation cluste
The dark points are theinterior sites of full coordination and the
gray shaded sites are either on the external hull or internal bou
aries.
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In Fig. 5 quantitative examination is made on the differe
classes of sites of the two kinds of clusters. In the main p
of the figure, the average numbers of two kinds of sites
shown,interior ~diamonds for fully coordinated percolation
crosses for ordinary percolation!, and external ~squares for
fully coordinated percolation, pluses for ordinary perco
tion!. It is clear that the interior sites are more than thr
times more abundant in fully coordinated percolation, than
ordinary percolation as is visually suggested by Fig.
Though this is primarily a local effect due to the full coo
dination rule, they do have a multiplicative effect at lon
range connectivity and thus may well be the source of
small difference in the value ofds .

Of course just the fact that there are more than three ti
as many interior sites~and correspondingly, much fewerhull
sites! in fully coordinated percolation must have quantitati
consequences~even if not qualitative! for any process on the
cluster which depends on degrees of connectivity rather t
just on the number of connected sites. An example of
effect of the different numbers of the hull sites may be
oxidation or catalysis of a material through the external e
bedding phase or even a irregularly shaped breakwater in
form of the external boundary of a percolation cluster. T
externalsites are those which are sometimes calledhull sites,
and they are known to scale with an exact exponent in o
nary percolation as

Nhull;Sdh /df , ~11!

wheredh
(o)57/4 and thus the exponent is 84/9150.923 . . .

for ordinary percolation. Since this is less than 1, these s

FIG. 5. The numbers ofexternalsites~squares and plusses! and
those ofinterior sites~diamonds and crosses! are scaled against th
cluster sizes. The solid~fully coordinated percolation! and dashed
~ordinary percolation! lines are the linear least squares fits. In t

inset, we show the number of external sites divided bysdh
(o)/df

(o)
,

showing that the population of the externalhull sites of fully coor-
dinated and ordinary percolation scale in the same way.
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comprise less and less of the cluster ass→` and the remain-
ing sites~i.e., interior and internal boundarysites! eventu-
ally dominate the whole cluster. This is already evident fro
the greater slopes close to 1 for theinterior sites in Fig. 5.
The linear regression fits for thehull sites in Fig. 5 indicate
the slopes of about 0.922 for ordinary percolation and 0.9
for fully coordinated percolation with essentially perfect fit
again reinforcing the conclusion that they show the sa
static critical behavior.

V. SUMMARY AND CONCLUSION

In summary, we have studied both static and dynam
critical behaviors associated with a model of the highly co
nected regions of a disordered cluster. The model is asite
variant of the four-coordinated percolation@2,3# on the
square lattice we callfully coordinated percolation. While
the bond version was studied forstaticcritical behavior, nei-
ther bond nor site version was previously studied for
dynamic behavior to the best of our knowledge. We ha
used various methods such as Monte Carlo simulatio
finite-size scaling and Arnoldi-Saad approximate diagon
ization of large random matrices for this purpose.

Though all indications are that the static behavior of t
model is exactly the same as the ordinary percolation~as
previous work suggested!, the dynamic behavior shows
small but significant difference in the values of the univer
critical exponents. We have looked for the cause of this d
ference and found a threefold increase in the number
significantly enhanced clustering of the interior sites~i.e.,
those not on the exterior or internal boundaries! and the as-
sociated decrease in the number of boundary sites. T
although the deviations from ordinary percolation in terms
the values of the dynamic critical exponents are not lar
there will be rather significant differences in any proces
that depend sensitively on those numbers. Possible exam
of such processes include the oxidation of a material thro
the external embedding phase and the vibrational nor
modes with boundary conditions such asclampingor tether-
ing of the external boundaries~through the contrast in elasti
constants of embedding and embedded materials, for
ample!.
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